# نُترجم الجينات: الشِّفرة الوراثية

### هدف الفعاليّة

فهم كيفية تشفير المعلومات التي تحدّد الصفات الوراثية في المادة الوراثية - DNA.

# مصطلَحات من المَنْهَج التعليميّ

الجينوم، الكروموسومات، النوكليوتيد، الجين، سلاسل الحمض النووي، البروتين

## مهارات

حلّ المشاكل واتّخاذ القرارات، بناء المعلومات، التعاون

# ماذا نفعل؟

- · شاهِدوا مقطع الفيديو "تسلسل الجينوم": https://goo.gl/iE3QMn.
- · بعد مشاهدتكم الفيديو، خُذوا من المعلّم نصّا للقراءة حول جرذ الخُلد والخُلد.
  - اقرأوا القصية.
  - يُعرَض في نهاية القصة سؤال عليكم أن تجيبوا عنه.

### قصتة جرذ الخُلد والخُلد

خلال رحلة للصفّ إلى النقب الغربي، التقطت مجموعة متنزهين صغار صورة تَظهَر فيها تلال تراب طري صغيرة.

سأل أحدهم: ما الذي يؤدي إلى تكوُّن التلال؟

أجابه آخر مازحًا: "هذه ظاهرة صدأ الأرض".






قال المرشد إنّ الكائنات الحية تحت الأرض هي وحدها التي يمكنها فعل ذلك، وإنّ هناك مخلوقين يمكنهما تكوين هذه التلال: جرذ الخُلد والخُلد. اقترح المرشد أن يحفر الطلاب في التلال ويبحثوا عن دلائل على وجود كائنات كهذه.

بدأ الطلاب بالحفر في التلال. لتسهيل أعمال البحث، حصلوا على معلومات وصور عن جرذ الخُلد وعن الخُلد.

اقرأوا المعلومات (المعلومات والصُّور مأخوذة من ويكيبيديا):





قارض يعيش في جحور تحت الأرض. جسمه أسطواني الشكل، طويل، ومُغطّى بفراء قصير وكثيف. ليس لديه ذيل وأعضاء بارزة أخرى كسمّاعات الأذنين. العينان تغوصان تحت جِلد الجمجمة ومغطّاتان بغشاء دقيق، لكنّ جرذ الخُلد يستطيع التمييز بين النور والظلام. لجرذ الخُلد أسنان سفلى طويلة بارزة من الفم. وبواسطتها يبعثر التراب ويوسّع جحوره. بالاستعانة بأطرافه الأمامية والخلفية يدفع التراب إلى ورائه، يستدير، ثم يدفعه بالاستعانة برأسه إلى خارج الجُحر. جرذ الخُلد نباتي، ويتغذى بشكل أساسي على درنات النبات، الجذور، والبصلات التي يجدها خلال الحفر.



### الخُلد



للخُلد غالبًا فراء بني وسميك. يقيم تحت سطح الأرض وقلّما يخرج فوق الأرض، ما جعله يفقد قدرته على النظر بشكل كامل تقريبًا، إذ إنّ عينَيه صغيرتان جدًّا. يبني خلال حياته منظومة متفرعة من الجُحور.

بدل العينين، يستخدم الخُلد أنفه وأذنيه كي يُخرِج طعامه – الحشرات والفضلات. تتيح حاسة الشمّ للخُلد أن يميّز ليس طبيعة مصدر الرائحة فقط، بل أيضًا مكانها بشكل دقيق. يمكن لأنفه الحسّاس أن يتتبّع طريق الفضلات، طعامه الرئيسي، في التربة. يتجوّل الخُلد في أنفاقه دون توقّف، ويبحث عن فضلات، ديدان، وكائنات صغيرة أخرى ليأكلها.

بعد البحث والحفر في التلال، وجد الأولاد بعض شعرات الفرو. نظروا مليّا إلى الشعر، لكنهم لم يستطيعوا أن يجيبوا عن السؤال: هل جرذ الخُلد هو الذي كوّن التلال أم إنه الخُلد؟

قال أحد الطلاب: "تُترجَم الجينات إلى صفات الكائن الحيّ. فإذا ترجمنا الجينات الموجودة في الخلايا التي في أساس الشعر الذي وجدناه، نعرف ما هي صفات الكائن الحيّ، وهكذا نعرف إن كان الشعر الذي وجدناه تابعًا لجُرذ خلد أم لخُلد.

لذلك طلب الطلاب من المرشد أن يأخذ الشعر كي يتمّ فحصه في مختبر لتحديد الجينات.



#### **AAAAACTCTGAGGGGTTT**

لترجمة الجينات التي تمّ تمييزها، عليكم استخدام جدول الشِّفرة الوراثية. في هذا الجدول تُشفّر كلّ ثلاثة نوكليوتيدات من الجين إلى حرف في اللغة العربية.

| الحرف الأول |     |     |              |     |   |     |              |   | مفات | جينات وه     |
|-------------|-----|-----|--------------|-----|---|-----|--------------|---|------|--------------|
| G           |     | Т   |              | С   |   | Α   |              |   |      |              |
| GAA         | J   | TAA | ض            | CAA | د | AAA | بداية الكلمة | Α | Α    | الحرف الثاني |
| GAC         |     | TAC |              | CAC | ذ | AAC | 1            | С |      |              |
| GAT         | ٩   | TAT | ص            | CAT |   | AAT |              | T |      |              |
| GAG         |     | TAG |              | CAG |   | AAG |              | G |      |              |
| GCA         | ن   | TCA | ظ            | CCA |   | ACA | ب            | Α | С    |              |
| GCC         |     | TCC | 9            | CCC |   | ACC |              | С |      |              |
| GCT         | ھ   | TCT | ع            | ССТ |   | ACT | ت            | T |      |              |
| GCG         |     | TCG |              | CCG |   | ACG |              | G |      |              |
| GTA         | 9   | TTA | غ            | СТА | j | ATA | ث            | Α | т    |              |
| GTC         |     | TTC |              | СТС |   | ATC |              | С |      |              |
| GTT         | ي - | TTT | نهاية الجملة | CTT | س | ATT | ج            | T |      |              |
| GTG         |     | TTG | ف            | CTG |   | ATG |              | G |      |              |
| GGA         | ö   | TGA |              | CGA | m | AGA | ح            | Α | G    |              |
| GGC         |     | TGC | ق            | CGC |   | AGC |              | С |      |              |
| GGT         | ی - | TGT | G            | CGT | ص | AGT | Ż            | T |      |              |
| GGG         |     | TGG | <u></u>      | CGG |   | AGG |              | G |      |              |

الجين الثاني الذي تم تمييزه هو:

### **AAAGCCACCAATACGGTTTTT**



في خلية الكائن الحيّ، تُتتج الجينات صفات، بحيث إنّ كلّ جين هو سلسلة شِفرات جينية أو كودونات (ثلاثة نوكليوتيدات)، تُشفَّر إلى أحماض أمينية. تتضمّ الأحماض الأمينية لتكوين بروتين يكوِّن جسم الكائن الحي. يعرض الجدول التالي الشُّفرة الوراثية، ويمكن أن نرى بالاستعانة به كيف يتمّ عمل الترجمة في خلية الكائن الحي:

| القاعدة | القاعدة الثانية          |                  |                   |                   |       |  |  |  |  |
|---------|--------------------------|------------------|-------------------|-------------------|-------|--|--|--|--|
| الأولى  | U                        | C                | Α                 | G                 | اشاشد |  |  |  |  |
|         | UUU<br>phenylalanine     | UCU<br>serine    | UAU<br>tyrosine   | UGU<br>cysteine   | U     |  |  |  |  |
| U       | UUC<br>phenylalanine     | UCC<br>serine    | UAC<br>tyrosine   | UGC<br>cysteine   | C     |  |  |  |  |
| U       | UUA<br>leucine           | UCA<br>serine    | UAA<br>انتهاء     | UGA<br>انتهاء     | Α     |  |  |  |  |
|         | UUG<br>leucine           | UCG<br>serine    | UAG<br>انتهاء     | UGG<br>tryptophan | G     |  |  |  |  |
|         | CUU<br>leucine           | CCU<br>proline   | CAU<br>histidine  | CGU<br>arginine   | U     |  |  |  |  |
| _       | CUC<br>leucine           | CCC<br>proline   | CAC<br>histidine  | CGC<br>arginine   | C     |  |  |  |  |
|         | CUA<br>leucine           | CCA<br>proline   | CAA<br>glutamine  | CGA<br>arginine   | Α     |  |  |  |  |
|         | CUG<br>leucine           | CCG<br>proline   | CAG<br>glutamine  | CGG<br>arginine   | G     |  |  |  |  |
|         | AUU<br>isoleucine        | ACU<br>threonine | AAU<br>asparagine | AGU<br>serine     | U     |  |  |  |  |
| Α       | AUC<br>isoleucine        | ACC<br>threonine | AAC<br>asparagine | AGC<br>serine     | C     |  |  |  |  |
| А       | AUA<br>isoleucine        | ACA<br>threonine | AAA<br>lysine     | AGA<br>arginine   | Α     |  |  |  |  |
|         | AUG (پندء)<br>methionine | ACG<br>threonine | AAG<br>lysine     | AGG<br>arginine   | G     |  |  |  |  |
|         | GUU<br>valine            | GCU<br>alanine   | GAU<br>aspartate  | GGU<br>glycine    | U     |  |  |  |  |
| G       | GUC<br>valine            | GCC<br>alanine   | GAC<br>aspartate  | GGC<br>glycine    | C     |  |  |  |  |
| 0       | GUA<br>valine            | GCA<br>alanine   | GAA<br>glutamate  | GGA<br>glycine    | Α     |  |  |  |  |
|         | GUG<br>valine            | GCG<br>alanine   | GAG<br>glutamate  | GGG<br>glydine    | G     |  |  |  |  |

